How Do You Rotate A 45 Degree Matrix?
How Do You Rotate A 45 Degree Matrix? If we represent the point (x,y) by the complex number x+iy, then we can rotate it 45 degrees clockwise simply by multiplying by the complex number (1−i)/√2 and then reading off their x and y coordinates. (x+iy)(1−i)/√2=((x+y)+i(y−x))/√2=x+y√2+iy−x√2. Therefore, the rotated coordinates of (x,y) are (x+y√2,y−x√2). How do